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Abstract

An upwind MUSCL type implicit scheme for the three-dimensional Navier- Stokes equations is

presented. Comparison between different approximate Riemann solvers (Roe and Osher) are
performed and the influence of the reconstructions schemes on the accuracy of the solution as
well as on the convergence of the method is studied. A new limiter is introduced in order to
remove the problems usually associated with non-linear upwind schemes. The implementation
of a ,“,diagona.lz upwind implicit operator for the three-dimensional Navier-Stokes equations is
also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows
are demonstrated if a non-equilibrium turbulence model is used.



1 Introduction

Much efforts have been deployed during the last years to build efficient numerical methods for the
solution of the equations of compressible viscous flows. Following the pioneer work of Godunov
[16), efficient upwind methods were developed [42,36] which enable an almost perfect capture
of stationnary shocks. With the introduction of essentially non-lincar schemes, TVD [52,17,47]
and ENO [19,18] schemes, the good shock capturing properties of the first-order upwind schemes
were extended to higher order schemes. Acceleration techniques were also improved, reducing
the cost of the computation of steady states. The diagonal dominance of the jacobian matrices
obtained with upwind schemes was for instance exploited to construct relaxation based implicit
methods [8,27,49], which may eventually be combined with multigrid methods [20,3,31]. Non-
elliptic multigrid techniques were also introduced for the centered approximation of the Euler
equations [21]. In this case, the damping of the high frequencies arises from a careful design
Runge-Kutta time stepping scheme combined with an adapted non-linear artificial dissipation
term [23]. In [28] the procedure was extended to the Navier-Stokes equations and the success of
the method is clearly demonstrated in [40,54]. While the numerical techniques were drastically
improved, in the meantime no much progress were reported in the modeling of the Reynolds
stresses. Thus, even if the computation of the flowfield around a complete aircraft has become
possible, [22,50], realistic simulation of separated flows around complex geometries remains
unpractical. In this report a newly developed code, enabling the simulation of three-dimensional
flows with reverse flow regions, on simple geometries (wings) is presented. The report is outline
as follows; after a short description of the equations to be solved (§2), the numerical procedure
is detailed: the spatial discretization in §3, the time integration and acceleration technique in
§4 and the boundary conditions in §5. The turbulence models used are then presented (§6) and
finally in §7 the results are discussed.

2 Governing Equations

The basic equations used as the physical model are the integral form of the mass-averaged
Navier-Stokes equations — Reynolds equations. Since the dominant viscous effects for high-
Reynolds number flows arise from the diffusion normal to the body surfaces, the thin-layer
approximation is employed. The turbulent transport of momentum and energy due to the
fluctuations of velocity and pressure is modeled with the eddy viscosity concept making the
form of the Reynolds equations identical to the form of the Navier-Stokes equations. The
equations to be solved are then

-(-?-/// Udv+/ Fﬁd.s::/ Fvrds (1)
ot v oV v

U=(p, pu, pv, pw, €)1

where

is the vector of the conserved variables. The quantity V denotes an arbitrary control volume,
0V and i correspond then respectively to the boundary surface and the outer normal of this
volume.
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In the cartesian frame (7,7,k ) the tensor F of the convection terms is
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and the tensor Fy of the diffusion terms in the thin-layer approximation in the direction 7, is
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where e; represents the internal energy. The bulk viscosity X is evaluated using the Stokes
hypothesis

3IN+2u=0
and the molecular viscosity is determined from the Sutherlands law
2
T\2 T+ 1104
= _—_ —=——— 4
H = Heo (Too) T +1104 )

As a result of the eddy viscosity assumption, the equations (1) with the expression (3) for
the tensor Fy correspond also to the Reynolds equations for turbulent flows if the molecular




viscosity is replaced by an “cffective” viscosity g + p; and the quantity 4= by $- + $#%. The
symbols u; and Prt used in the previous expressions denote respectively the eddy viscosity and

the turbulent Prandtl number.

3 Numerical Method

The equations (1) are solved with an implicit upwind method of the form

(I+AtL)§U = -AtR"
Uttt = U™ 48U (5)

where L is a spatial operator and R is the residual of the stcady equations. No accuracy
restriction will be imposed on the implicit operator as we are interested only in steady state
solutions.

3.1 Computation of the residual

The computation of the residual is performed following the idca of Godunov [16] and gener-
alized by Van Leer [53]. The procedure comprises of three stages. The first stage consists
of the Reconstruction of the flowfield from its cell average values by piecewise polynomial
approximations. In the second stage, the time Evolution (in the small, i.e. 0 <t < ¢) of the
reconstructed flowfield is computed by solving, at each interface, a Riemann problem. The pro-
cedure is therefore “upwind” as the wave propagation is taken into account when the Riemann
problem is solved. In the final stage, the solution obtained by the resolution of the Riemann
problems is Projected on the cells and new average values are computed. This step makes the
overall procedure conservative.

3.2 Reconstruction schemes

Two reconstruction schemes were employed, a second-order ENO sclieme of Harten and Osher
[19] and a family of upwind biased schemes known as the x scheme. With the second-order
ENO scheme, the smoothest parabola on the interval [z;, z;41] is first computed,

qi+1 — qi 2
— 4t (T = xi41)0 (]
P ( +1)0%q

Piii(e) =g+ (2 -m) [
with
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where the minmod operator is defined as

sign(z) min(|z|, |y|) if sign(z) = sign(y)

0 otherwise.

minmod(z.y) =




The derivatives of Pi+%(:c) and Pi_%(z) are then computed at z; and the value of the slope of

the reconstructed field on [xi_%, xi+%] is obtained from

dPH_%(QI,') dPi_]z.(.’L',')

8¢ = minmod [

dz dz
The cell interface values are therefore,
IdLivd = & + %61(1
QRi-y = G- %510
with
h; = Tigl = Tid

With the second-order ENO scheme, the computation of #™*! involves the value of %" at
the points ¢ — 3 through ¢ + 3. This seven points stencil is required in order to distinguish
between the variation of the flowfield near a shock from the variation of the flowfield near a
smooth extremum. Five point schemes ( like the £ scheme presented below ) cannot ensure,
even if the limiter is designed such as it does not “clip” at an extremum, second-order accuracy
in the vicinity of all smooth extrema.

When the  scheme is used, the left and right values at the ¢ +% cell interfaces are computed
with an upwind biased interpolation,

fLivy = &+ A [(1 + k)81 + (1 K)&Ii_%] (©)
GRi+d = G+1 — it [(1 +K)8g; 1 +(1- K)50i+g]
with Gins — G
6q,-+% = -’;fﬁ

In order to ensure an interpolation which does not increase the Total Variation of the initial
distribution, the gradients 8¢ have to be limited. Following [6], the gradients were limited by
replacing éq by 6 with

i — mi d[qi-*-l—qi’b(Ii"Qi—l]
! RO b + " hi + hiy
=_ . Gi — gi-1 Giv1 — 4

6 = d , b ]
! mnmo [hi +hici’ hig1 +hi

where the value of b corresponds to the largest value for which the interpolated ¢, 1 lies between
2

g; and gi41,
b= 3—K

T1-k

The cell interfaces values are thus computed with

Uivi = @&+ A [(1+n)5,-+ +(1 —n)S;] 0
Ri+t = Qi1 — Rapl [(1 +R)6, + (1~ ,‘,;)5;11] :



For x € [-1,1] the x scheme is second-order accurate and stable. The particular value
K = % leads even to a third-order accurate scheme (on a uniform one-dimensional mesh).
With the Chakravarthy-Osher limiter, the method is robust and when combined to the “third-
order” scheme, fairly accurate results on coarse grids are obtained — see the result section.
Unfortunatly, the Chakravarthy-Osher limiter has also the drawback of preventing the scheme
to converge to the computer accuracy, hence a different limiter is proposed. The design of the
new limiter was based on the following observations.

¢ In order to have a good convergence rate, smoothness is the name of the game, thus all
non-linear changes should be made as smooth as possible.

o The only requirement in the design of a “monotone” shock capturing scheme, is to exclude
the use of the gradients accross the shocks.

The procedure developed consists therefore to locate the shocks and to modify, in a smooth
way, the gradients in their vicinities. As the difference of the unlimited left and right pressure
values at the cell faces

T= |Pi+-§L - Pi+-¥2-R,|
is of the order of the truncation error in continuous flow regions and of the order of the shock

strength in the vicinity of the shock, it can serve as a shock detector. The slopes are then
limited according to

b =08t ; &7 = @67 | (8)
where ® is the restriction to the interval [0,1] of the function a(z — ¢)3 + 1. with
a=-10°
£=10"".

The coefficient ¢ represents the value over which the limiting is effective. As ®'(¢) = "(¢) =0,
the limiter is smooth and the scheme is not too much sensitive to the value of €. The coefficient
a controls the strength of the limiting and was fixed by numerical experiments.

An other way used to limit the influence of the gradient accross the shock is to combine
a fully upwind reconstruction, k = —1, with an upwind computation of the fluxes. As the
gradients have to be limited only near the shocks, a natural procedure is then to blend, using
the shock detector function @, the actual value of k with the fully upwind value k = —~1.

=0k +(1-®)(-1) (9)

In general, the downwind and upwind gradients should not be limited equally. For instance
in the ideal shock case presented in the figure (1), only the gradient ¢;, § must be limited. In

order to distinctly limit the upwind and downwind gradients the ratios

-6
r -—-IF
and p
+ -
r _|6_|



are introduced. If r— « 1 (6% > 67), respectively rt < 1 (6~ > 6%). only 6%, respectively
6=, must be limited. The restriction to the interval [0,1] of the function

_b(r—e)2+1

b(r) = c(r—e€)?+1

P (0'(e) = 0) (10)

is therefore proposed to compute the limited gradients 6%,
5 = [® + (1 - 8)8(r¥)] 6*. (11)

The value 8(1) has to be set to zero in order to limit equally §* and 6~ when the downwind
and upwind gradients arc identicals. This choice fixes the valne of b. The coefficient ¢ was
determined by imposing #(0.5) = 0.5. In all the computations done with this new limiter, the
value of € was set to 0.003.

In summary, with the “smooth limiter” just described, the values ¢;, 3 at the cell faces are
computed using the relation (7) in which the gradients §* were obtained through (11) and
where the value k was replaced by the blending & given in (9).

3.3 Resolution of the Riemann problem

In the original work of Godunov, the Riemann problems were solved exactly, but it has been
proven that similar flowfields could be obtained at a lower cost if the Riemann problems were
solved only approximately. Two of such approximate Riemann solvers are those proposed
by Roe [42] and Osher [36]. Both rely on the wave decomposition. In the Roe scheme the
decomposition is made by assuming a locally constant state U for which

Ur-UL Dok TRl
F(Ur) - F(UL) = ¥ Afebx

i

(12)

where

Ak is an eigenvalue of the jacobian matrix %—(0)

71 is a right eigenvector of 2E(U
g g atl

ap = ik(UR — Up) with [ a left eigenvector of g—g 0)

In [44], Roe and Pike proved that the state U for which the equations (12) are satisfied exist
and is unique. It can be computed using the special averaging introduced by Roe in [42],
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where

= [k
a PR

2
H = ﬁ + 1(u? + 0?2 + w?).

The Osher scheme is in some sense, a non linear extension of the Roe scheme. In the case
of a non-linear hyperbolic system, the wave decomposition can be written as,

Up-U;, = Zkfrkrkdsk

(14)
F(Ur) - F(U) = Y4 Jr, Msrrdss
where the 'y curves are defined by
avu
E.-s-; = Tk.

Using the constancy of the Riemann invariants along the I'; curves, explicit expressions for the
integrals can be obtained [36] [29],

frl >\1T1 d81 F(UH_%)-F(U,)
Jrydarzdsy = F(Upyz) = F(Upyy) (15)
Jrydaradss = F(Uiyr) = F(Uyyz)

with
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and U, 2, Uiy have also to be introduced in order to
3
account for a possible change of the sign of A = w4 a or A = u — a. These intermediate states
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Both with the Osher and Roe scheme the flux at the interface is computed using,

with the AF~ defined as

and where

Fiy1 =F(UL)+;AF,:

= AL ds
/Fk k Tk @S5k

= A TR0y

A- A

AT = 7

(19)

(20)

(21)

(22)

Because in the equation (21) the integration is made only on the negative part of A, the
integrand is not an exact differential and the values of the fluxes depend on the ordering in the
integration path {JI'x. For the Osher P variant, the integration path is Fy—q, Iy, ['u4q and for
the O variant, it is I'u4a, [y, T'u=a. A closer inspection of the integrals shows that if unlikely
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cases are discarded -- supersonic flows in opposite directions on cach side of the interface for
instance — the computation of the flux at the interface requires at most three evaluations of
fluxes for the P variant while it requires four evaluations for the O variant.

The above expressions are useful for computations in a cartesian mesh ( the splitting for the
Osher scheme was made in the ¢ direction ). For general meshes, the splitting is made in the
direction normal to the cell face. Such a choice is computationally convenient but is also quite
arbitrary; the splitting direction depends on the mesh rather than on the flow properties. In
practice however, the procedure appeared to perform well and even if different grid independant
splitting formulations have been known for several years [13,43,14,38], their efficiency are yet not
fully established. With the “grid splitting” procedure, the extension to generalized coordinates
of the approximate Riemann solvers is simple, the cartesian velocities v, v and w have just to
be replaced by the contravariant velocities %, ¥ and .

U = ngu+ nyv + nw
v = Lu+lypv+lw (23)
W = meu+myv+ m.w

where 7 is the vector normal to the cell interface and I, 7t are the tangential vectors. In
the two-dimensional case, the tangential vector is uniquely defined by the knowledge of the
normal vector, in the three-dimensional case however, the normal vector defines only a family
of tangential vectors [ and 7. A precise definition of these tangential vectors can yet be avoided,
by noticing that only the linear combination of the tangential velocities

Q, = v+ md
Q, = Lo+ myw

Q. = Lo+ m,w

are needed, and that these lincar combinations can also be written as

Q, = u-—n;i
Q, = v—-nyi (24)
Q, = w-n,i.

Thus in practice, the tangential velocities ¢, W are replaced in the computations by the velocities
Q., Qy, and Q..

3.4 Computation of the viscous terms

In a finite volume approach, the computation of the viscous terms requires the evaluation of
first-order derivatives at the cell faces. The computation of such gradients may be obtained
using the Gauss theorem [37,35] but in this work a simpler procedure has been employed and
the gradients were computed with

dq.

— i+
a8

(2i+1 - ?i)SH-%
Vig1 + Vs

where S;, 1 is the surface of the interface and V;, V41 are the volumes of the cells on both

]
4

(25)
=)

i

2
sides of the interface.
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4 Implicit Operator

The implicit operator used to accelerate the convergence to the steady state is an extension
to the three-dimensional case of the operator presented by Coakley [10]. It is derived from a
backward Euler implicit integration of the equation (1). Instead of solving this operator by
relaxation techniques as done in two dimensions by [27,49,30] and partially in three dimen-
sions by [7], the three-dimensional implicit operator is dimensionally splitted [5] leading to the
resolution of three one-dimensional operators of the form

0A oM 0
(I+At-(-?z-A 3 86)6U RHS (26)

where A is the jacobian matrix of the Euler flux in the direction £

i- OF _OF +OG +6H
98U T U T U
with .
F=F7; G=Fj; H=Fk

and M is the matrix of the viscous terms.

If the spatial derivatives of (26) are discretized with a three points stencil, the resolution of
the system (26) necessitates the inversion of a bloc 5x5 tridiagonal matrix. Following Chaussee
and Pulliam [9] the system can be “diagonalized” leading to the inversion of scalar tridiagonal
systems. This is accomplished by replacing the matrix M by its spectral radius o I, using the
decomposition, A = T-'AT and by taking the product T-'A out of the spatial derivative.
Introducing the characteristic variables §U = T6U and multiplying the equation (26) by the
matrix T, the system to be solved is now,

)
(I + At A52 ~ At n10€2)5U RHS. (27)

The Coakley scheme is finally obtained if a first-order upwind approximation is used for
the spatial derivatives of the convective terms and a centered approximation for the diffusion
terms. It should be noted that whereas the matrix A involves only the components of the normal
vector 7, the matrices T=!, T and thereafter §U involve also the tangential vectors I, 7. In
consequence, while the original system requires only the knowledge of the normal vector 7, the
“diagonalized” system necessitates also the definition of the tangential vectors I, 7. As the
normal vector 7 was calculated by taking the cross product £; x i, fig.(2), it seems natural to
choose

- 4
l= — (28)
1241
and .
m=nxl. (29)

Such a procedure however produces spurious crossflows for purely two-dimensional flows. In
the simple case of a two-dimensional turbulent flow on a flate plate, the vectors 7, k can be
chosen as the tangential vectors if the mesh is cartesian, fig.(3). The contravariant velocities




are then identical to the cartesian velocities,

Al = Au
Ad = Av
A = Aw (: 0)

and the implicit system for the tangential velocities can be written as

Liév] = [Av]

(30)
Lléw] = [Aw]

where
[61)] = [61}1, v ,6vj_1,6vj,6vj+1, ce ,6UJ]T.

If the matrix £ is not singular, no crossflow can be generated by the implicit operator.

With the procedure proposed for the computation of the tangential vectors [and ™, equa-
tions (28,29), the vectors will differ from 7, &, there form will be

-

L = o7 + Bik
'ffl,j = ‘yjj' + 6_7’::

If these vectors are used for the definition of the contravariant velocities, the “diagonal” implicit
system can be written as

L[5%]
L[6]

[o][Av] + [B)[Aw]
M[av] + [§][Aw]

thus

i

[é9]
[8%0]

Lla][Av] + L7YB)[Aw]

1 (31)
L70[A0] + £76)[Aw].

i

The solution of the implicit operator will be independant to the choice of the tangential vectors
if the tangential velocities satisfy,

[69] = [a]lév] + [B][6w]

(32)
[6w] = [y][6v] + [8][6w].

Unfortunatly the relations (32) are not always fulfilled as it can be seen by replacing in (31)
[Av] by L[év] and [Aw] by L[6w],

[62]
[6w)

L elClév] + L7YBIC[6w]

(33)
CL[6r] + CoV[8)L[6w).
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The expression (33) can be identical to (32) if and only if the matrix £ commute with the
diagonal matrices [a], (8], [7], [6]. For general matrices £, this necessitates that

[a] = aI
B = BI
[v] = 1 o
[6] = 61

In the case of the two-dimensional turbulent flow on the flate plate, because of the stretching
of the mesh in the boundary layer, the relations (34) are far from being satisfied and as a
consequence, a strong crossflow is generated, éw # 0. The “natural” procedure has therefore
to be rejected.

The proposed method for the computation of the tangential velocities, follows the procedure
used at the explicit step. The computation of the increments of the tangential velocity vectors
69 and 6w are replaced by the computation of linear combinations of them i.e.

0y = (160 +mybd) = du—néi
0, = (6o 4+ myéw) = év—nybu (35)
6Q, = (160 + m,bw) = bw—mn,da.

Performing some linear combinations on the equations for §9 and 6w, the equations (36) can
be formed,

6' Cd
0Qq + 1AL (lg%z1£ + mga;—;v) =AQg; =12z, 9, = (36)

Finally the equations for 6y are obtained if the coordinate components [y, my are taken inside
the spatial derivatives — this approximation is of the same order as the approximation used in
the “diagonalization” — leading to

(I + ﬂAi(%)&Qg =AQy; O=1z, vy, 2 (37)

Thus instead of solving the two equations for §% and éw, the three equations for 6Q,, 6§, and
6€2, will be solved. Of course, the three velocity components 8§25 cannot be independant, they
should satisfy

N6y + ny6Qy + 0,68, = 0. (38)
Because of the simplification made for the transformation of (36), the equation (38) is generally

not verified ; the tangential vector 6Q does not lie in the tangential plane. Therefore it is
replaced by its projection on the tangential plane §Q’,

59'9 = 68y — ngd (39)
with
0 =m0, + 1y 6Qy, + n.69,.

By construction no crossflow can be generated when this procedure is used for the computation
of the implicit tangential incremental velocities. Numerical experiments have also shown that
for purely two-dimensional flows, the three-dimensional operator leads to almost the same
convergence rate than the corresponding two-dimensional operator.

14




5 Boundary Conditions

The use of upwind schemes simplifies significantly the computation at the boundaries as solely
the “physical” boundary conditions are needed. For instance, if only simple waves are assumed
at the boundaries, the Osher P variant scheme can be used at the boundaries by replacing
the information contained in the waves outside of the computational domain by the natural
physical boundary conditions [15] : static pressure at an outflow boundary; rest temperature,
rest pressure and flow angle at an inflow; no slip velocity, zero normal pressure gradient and
adiabaticity at a solid wall .... For lifting airfoils, the freestream conditions are modified by
taking into account the circulation around the airfoil as discussed in [48]. The undisturbed flow
conditions are used for flows around finite wings as the disturbances created by the wing decay
more quickly in the three-dimensional case than in the two-dimensional one. If sufficiently far
from the wing, they behave like those generated by a point singularity rather than by a line
singularity.

At the implicit step all the boundary conditions are treated implicitly. For the characteristic
variables 882z, 69, , 692, and a?6p — & P, if the index of the boundary is denoted by N + 1, the
equations at all type of boundaries can be cast into the form

6UN+1 =d16Un + d26Un_4. (40)
with
di=d; =0 for a solid wall, a farfield boundary
d, = % , dy = -—% for an extrapolated boundary condition

dy=1or0, d; =0 for a symmetry condition

If treated implicitly, the symmetry and wall boundary conditions introduce some coupling
between the variables é Rt = 8P + paéi and SR~ = §P — paéi. The implicit equations can
therefore not completely be decoupled and a 2x2 block tridiagonal system has to be solved for
these characteristic variables. The boundary conditions associated with this 2x2 system are the
equivalent of (40)

SRt df df || énrt dt 0 SR
= + (41)
0R~ dy dy OR~ 0 d3 6R™
N+1 N N-1
with
df,3=0 for a farfield
d&t =df = 3 df = at a wall and a symmetry plane
df =d; =3, df =d] =0, df =~1 for an extrapolated boundary condition

As the same functional form (40) or (41) is used at all type of boundaries, the computation of
implicit boundary conditions does not impaired the vectorizability of the implicit step.

15



6 Turbulence Modeling

Two simple mixing length turbulence models were examined in this work. The first model
considered is the standard Baldwin-Lomax model [4]

vi = pR*p*D¥w|; K =04

v,e = 1.6F,Fkleb(n) (42)
vy = min(v, Vi)
where +
D = 1- exp(--gg)
nt = yfl; u, = maxy/vw
. ’l x“vlmgx“lvlminl2
F, = mn [nmameaxv maxi|% Y max =
Fmax = maxj(F(n))i,j,k ) F(nmax) = Fma.x
F(n) = nlwl|D

-1
Fklch = 0.0168 [1+5.5(;%i”x-)6]

The definition of u, was chosen slightly different from the wall shear stress as used in the original
Baldwin-Lomax turbulence model. This modification was introduced in order to prevent from
the computation of a vanishing eddy viscosity in a section emanating from a saddle separation
point (jwlw = 0).

It is well known that equilibrium models such as the Baldwin-Lomax model, are not suited
for separated flows for which the diffusion and the convection of the turbulence are no more
negligible and introduce some imbalance between the production and the dissipation rate of
turbulence. While retaining the eddy viscosity assumption these non equilibrium effects can
be taken into account by two-equation models, K — ¢, K — w, but it seems that despite their
“universality” the two-equation models does not improve significantly the agreement between
the computed results and the experimental data for separated flows [11]. A less ambitious
approach is to modify two-layers mixing length models in order to extend their successes to
separated flows. Such an approach was taken by Johnson and King [25] and the model they
derived, appeared to be adequate for the computation of separated flows on airfoils and wings
(1] 2.

The idea behind the Johnson-King model is (i) to scale the turbulent velocity to the square
root of the maximum Reynolds shear stress rather than to a length scale wall vorticity product;
(ii) to compute the maximum Reynolds shear stress by solving a differential equation in which
non-equilibrium effects are taken into account. As the level of the turbulent shear stress is then
determined by the differential equation, the Johnson-King model in contrary to standard mixing
length models, neither depends only on local mean flow gradients nor assumed a turbulence in
equilibrium. The eddy viscosity distribution in the inner layer used with the Johnson-King
model is then

Vy; = I\"nD2uM (43)
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where

UM =(IM.)32-

+
D= l—exp(——%)
+ max uM,u-r
n —L—(——l,, :

Here and below the index ,s indicates the location where the Reynolds shear stress is maximum.

In the original formulation of Johnson and King the outer eddy viscosity layer was based on
the Cebeci-Smith distribution. This formulation was well suited in the boundary-layer context
used by Johnson and King for the derivation of their model, but with Navier-Stokes codes the
Baldwin-Lomax formulation is more convenient. The outer eddy viscosity layer is therefore
calculated using

to = cl.6 Fka (44)

with
6 = 1.9 nax
-1
Fk = 0.0168 [1 + 5.5(3)¢]

The coefficient ¢ is introduced to force the value of the maximum shear stress 7ay = p|w]|, to
match the value 7)s obtained by the resolution of the differential equation (48). This coefficient
can be computed by solving the equation

fm(o)—Tar=0 (45)
with a Newton method, or with a procedure proposed by Abid (1],
Ut+A'¢ — o,i ™ (46)

Fm(ot)
o = 1.

Knowing the values of vy and vy,, the actual value of the turbulent eddy viscosity v, is
computed with

v = (1 — exp(-——)) (47)

As stated, the level of the turbulent shear stress is obtained through the resolution of a differ-
ential equation, see [25] for its derivation. In the three-dimensional case, this equation is

Syt oyt = S - My 4 (1—0%)+] (48)

with

Lpr = min(Knar,0.225K6).
The left hand side of (48) represents the convection of the turbulent shear stress. The diffusion
of the turbulent shear stress being modeled by the last term of the right hand side, the remaining

term corresponds then to the imbalance between the production and dissipation of turbulence.
This term is consequently approximated by the difference between the actual shear stress and
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the shear stress that would have been obtained if the turbulence was in equilibrium. This shear
stress, Teq, is computed at 1 = 7y using

Teq = /tthlw'

=)

Vieq = Vioeq (1 - exp(— Ttoeq

— 2
Viieq = ‘KUD Ueq

Vtoeq = 1.6 Fka

(49)

with

nu
D=1- exp(—-ﬁl)

Ueq = Max(Vteqlw], v|wl).

The convection terms of (48) are approximate by first-order upwind differences. The equation
is then solved with a Point Alternate Symmetric Gauss-Seidel Relaxation with one relaxation
performed in each direction. An alternative approach used in [39] and [2], is to add a time
dependent term and to solve the equation in the same way as the Navier-Stokes equations (1).

7 Results and Discussions

The newly developed code was first validated on two-dimensional airfoils and the influence of
the different choices of Riemann solvers and reconstruction schemes was studied. For instance
the influence of the Riemann solver on the solution was studied on the CASTI10 airfoil at
M, = .767, a = 2.159, Re = 1 x 107. Under these conditions the shock is strong enough to
induce a separation of the boundary layer. As it can be seen from figures (4-6), the results
obtained with the Roe and Osher schemes are almost identical for this sensitive test case, even
on coarse meshes. In particular the rapid acceleration at the leading edge is well predicted.
The difference in the shock location between the experiments of [34] and the computations, can
be due to the extreme sensitivity of this airfoil to wind tunnel side-wall effects [33], or are due
to the Baldwin-Lomax turbulence model employed in the computations, model which is not
adequate for separated flows. A clear improvement in the shock location was obtained with
the Johnson-King model, fig.(7). Not only the computed pressure distributions on the airfoil,
obtained with the different approximate Riemann solvers are the same, but the whole flowfields
look alike fig.(8-10).

The numerical procedure shows a larger sensitivity to the reconstruction schemes than to
the Riemann solvers. On both the CAST10 and the RAT2822 airfoils, the inherent numerical
viscosity of the second-order ENO scheme induces some significant differences, at the leading
edge and on the upper surface of the airfoils, between the computed pressure distribution and
the experiments of Mineck [34] and Cook et al. [12], fig.(11, 12). A better agreement with the
experimental data and a solution closer to the fine grid solution was obtained if the third-order
k scheme with the Chakravarthy- Osher limiter is used, fig.(4,13). It can be noticed however,
that the pressure distribution on the lower surface of the airfoil is better predicted with the
uniformly second-order scheme than with the TVD scheme which becomes a first-order scheme
at extrema. Comparing the result obtained with the unlimited third-order scheme, fig.(14), and
with the TVD scheme, it is clear that the limiter is active not only near the shock but also on
the lower surface and near the leading edge.
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In order to establish the optimal method, the computing time and the convergence histories
of the different approximate Riemann solvers have to be compared. From table (1) it is clear
that the Roe scheme is less expensive per iteration than the Osher scheme. The convergence
histories have also to be examined as it has been found [41], that the Roe scheme induces
some oscillations for slowly moving shocks whereas the Osher scheme does not generate such
oscillations. As the shock approaches its final location, a slow moving shock is likely to appear.
Therefore, if the oscillations are not damped efficiently, the convergence may slow down. This
behavior has not been observed and even the convergence with the Roe scheme was found to
be slightly better, fig.(15-17). Thus, as the third-order scheme with the Chakravarthy-Osher
limiter, not only is more accurate than the second-order ENO scheme but is also less expensive,
table(2), the optimal choice is clearly to combine the Roe scheme with the third-order « scheme.

As already observed [32], the limiters have usually an adverse effect on the convergence rates
of the scheme. This undesirable property can be illustrated by comparing on the RAE2822 airfoil
at My, = .676, a = 1.93, Re = 5.7 x 108 (case 1), the convergence history of the limited scheme
with that of the unlimited one, fig.(18-19). The results indicate that even if the flow does not
present any shock, the limiter is active and the non-smoothness of the limiting function creates
some strong non-linearities which are responsible of the deterioration of the convergence history.
It has been shown [55], that even with a differentiable limiter ®(r), where r is the ratio of the
successive gradients, the problem remains. The reason lies in the behavior of r which is like a
random function in the farfield, where the gradients are very smalls. The cure in this case is
to use a cutoff value under which the gradients are not limited, as described in [51]. It can be
noted, that although only a two order of magnitude decay of the residual is obtained with the
limiter turned on, the solution itself is almost identical to the unlimited one and agrees well
with the experimental results, fig.(20-21). Therefore a convergence to the level of the truncation
error can be suspected. It was found by numerical experiments, that a faster convergence is
obtained when higher CFL numbers are combined with an under-relaxation of the increments.
This behavior is illustrated by comparing the figures (19) and (22). In both cases near optimal
CFL numbers were used.

If the solution contains a shock, the unlimited third-order scheme does not lead to a smooth
solution, fig.(23). The non-smoothness of the solution has also an adverse effect on the con-
vergence, fig.(24). In such case, a smooth solution without limiter can be obtained if the fully
upwind scheme (k = —1) is used, fig.(25). This value of x leads to a much better convergence
history as well, fig.(26). With the limited scheme, a limit cycle was again obtained, figures
(27-29). It is interesting to note that the level of the residual increases with increasing CFL
numbers. With higher CFL numbers, the lift reaches its mean value more rapidly but noticeable
fluctuations around the mean value become more and more apparent. When highly non-linear
schemes are used to compute steady solutions, one should therefore ensure that the residual has
eflectively been reduced below the level of the truncation error.

The convergence problems found with the Chakravarthy-Osher limiter can be elimitated
on the RAE2822 airfoil, if the limiter is replaced by the “smooth limiter” described above. A
convergence to the machine zero is then obtained on coarse and fine grids, fig.(30). It can be
noted that the convergence rates of the scheme with the “smooth limiter” and of the unlimited
scheme are alike; they even are almost independant to the grid density, fig.(30, 31). If the
convergence properties of the “smooth limiter” and of the unlimited scheme are similar, the
solutions calculated with the “smooth limiter” are more accurate than the solutions obtained
with the unlimited scheme. Examining the figures (32, 33), it is clear that the solutions com-
puted with the “smooth limiter” do not present any oscillation. Comparing on the RAE2822
airfoil the pressure distributions on the coarse grid, it appears that the accuracy of the scheme
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with the “smooth limiter” lies between the accuracy of the unlimited second-order scheme and
the accuracy of the third-order scheme —with and without the Chakravarthy-Osher limiter—
fig.(32). The pressure distribution with the “smooth limiter” for instance presents an overshoot
at the leading edge whereas the third-order scheme does not show any overshoot. This over-
shoot is however more pronounced with the fully upwind scheme. Similar results are obtained
for the pressure distribution on the upper surface; the pressure level is better predicted with
the “smooth limiter” than with the fully upwind scheme but the shock location and the pres-
sure peak near the leading edge, are not as well predicted with the “smooth limiter” as with
the third-order scheme. These results could have been expected as the value % is a blending
of the value k = -1 (fully upwind) and x = 1 (third-order). It is interesting to note that in
contrast to the Chakravarthy-Osher limiter, the “smooth limiter” does not smear the extremum
on the under surface of the airfoil. Thus, even if the goal consisting of limiting the gradients
only in the vicinity of the shocks, has not been fully achieved, significant improvements were
obtained. The excessive dissipation introduced at the leading edge is a consequence of the lack
of resolution in this region. As the mesh is refined, the results become more and more alike,
fig.(33). A closer inspection on the skin friction coefficient shows however, that the fully upwind
scheme introduces more dissipation at the trailing edge than both the third-order scheme with
the Chakravarthy-Osher limiter and the “smooth limiter”. On the skin friction coefficient, the
shock appeared also to be better captured with the “smooth limiter” than with the fully unlim-
ited upwind scheme. From these experiments one can consider that the third-order scheme with
the Chakravarthy-Osher limiter is the most accurate scheme used, but the x scheme with the
“smooth limiter” while maintaining most of the accuracy of the third-order scheme, improves
drastically the convergence of the scheme.

The “smooth limiter” was also applied to the computation of the flowfield around the same
RAE2822 airfoil but with different flow conditions, My, = .75, a = 2.81, Re=6.5 x 10° (case
10). Under these conditions a shock induced separation forms on the upper surface of the airfoil.
With the Baldwin-Lomax turbulence model, a wrong shock location is again obtained fig.(34)
but no oscillations are created and the “smooth limiter” does not produce too much dissipation
at the trailing edge of the airfoil, fig.(34). In this case also, a machine accuracy convergence
was reached, fig.(35). On the ONERA M6 wing My, = .84, o = 3.06, Re = 11 x 10, the
“smooth limiter” improves the convergence of the method when compared to the Chakravarthy-
Osher limiter, but the convergence rate is not as good as that of the unlimited fully upwind
scheme, fig.(36). Examining the solution, fig.(37), it is apparent that the results calculated
with the “smooth limiter” are in a large part of the wing, close to the results obtained with the
Chakravarthy-Osher limiter. While resolving slightly better the leading edge pressure peak, the
unlimited scheme smears much more the shock. Near the tip of the wing, %1 > 0.9, the “smooth
limiter” introduces an additional extremum. This new extremum is probably responsible of the
slowdown of the convergence as comnpared to the unlimited scheme. It is the author belief,
that if the limiter is designed correctly, the convergence with the limited scheme should be as
good as the convergence obtained with the unlimited scheme. The behavior of the scheme with
the “smooth limiter” on the coarse grid indicates that something was not done properly. This
indication has been confirmed by the difficulties encounted on a finer mesh with the “smooth
limiter”. In conclusion, the “smooth limiter” improves significantly the convergence of the
method on the RAE2822 airfoil, but it is still not the “Ultimate” limiter and modifications
have to be made in order to obtain a broader range of its applicability.

The influence of the turbulence modeling has finally been studied. For attached flows on
airfoils, we have seen fig.(18,33) that a good agreement with the experimental data can be
obtained with the Baldwin-Lomax turbulence model. The same is true for the attached flow on
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the ONERA M6 wing M, = .84, a = 3.06, Re = 11 x 10%, if the grid is fine enough, fig.(38).
For separated flows, (RAE2822 case 10), the Baldwin-Lomax model predicts a shock location
which is far downstream of the location observed experimentally, fig.(39). No improvements
are found by refining the mesh. It can be noted once again, that the third-order scheme
combined with the Chakravarthy-Osher limiter gives fairly accurate results on coarse grids. If
the equilibrium model does not predict the proper shock location, with the non-equilibrium
model of Johnson and King, the correct shock location is found, fig.(40). Comparing the grid
refinement study made with the Baldwin-Lomax model and with the Johnson-King model,
the greater sensitivity of the Johnson-King model clearly appears. A noticeable difference in
the shock location is observed whether a 161x33 or a 257x65 mesh is used. Futhermore, the
Johnson-King model is particulary sensitive to the initial level of the maximum shear stress. For
instance the “solution” (unsteady) shown in figure (41) was obtained in the following manner :
the Reynolds equations with the Baldwin-Lomax model were first solved on a 81x17 mesh; this
solution was then interpolated on the 161x33 mesh and serves as the initial condition for this
finer mesh; fifty iterations were then performed on the 161x33 mesh with the Baldwin-Lomax
model before the original Johnson-King model was turned on. If more iterations had been
performed on the 161x33 mesh with the Baldwin-Lomax model, steady but wrong solutions
would have been obtained as well. The solution shown in figure (40a) was computed by taking
as the initial condition, the converged solution obtained with the Baldwin-Lomax model on
the 161x33 mesh. In order to enforce a unique solution — independant of the initial condition
— the velocity scale used in the inner layer of the equilibrium eddy viscosity, vsieq, has to be
replaced. Instead of using

lleq = Vteq|w]

as in the original Johnson-King model,
Ueq = MaX(Vgeqlw], v|w])

must be employed. This fix was yet not sufficient in the computation of the ONERA M6 wing
shown below. The level of the starting maximun shear stress was in this case still to low and
in consequence, the shock location was moving upstream without any bound. The fix was then
to replace in the computation of 144, the inner layer formulation of Johnson and King by the
Baldwin and Lomax formulation,

Viieq = 1\"2712D2lw|-

With the Baldwin-Lomax formulation for v4;eq, a better solution was found on the RAE2822
(case 10) airfoil on a coarse grid, fig.( 42), but on a finer grid, the pressure recovery was
unfortunately not predicted as well as with the “original” formulation; a pressure bump is found,
fig.(43). This bump has also been observed by Radespiel [39] and Swanson [46], with a Jameson
type scheme and with the “original” formulation of Johnson and King. The extreme sensitivity
of the Johnson-King model shows up also on the convergence of the method. From figure (44),
it is apparent that the lift converges with difficulties, the clear decay of the oscillations indicates
nevertheless that if enough iterations are performed, a steady solution can be expected. It should
also be pointed that the computation of ¢ proposed by Abid, equation (46), introduces some
time dependency in the solution. The steady state will slightly depend on the time integration
path and depending whether the turbulence quantities were updated at every iterations or only
at every five iterations, different convergence histories were found.

As already noticed by Coakley [11], we also observed that whereas the Johnson-King model
improves significantly the prediction of separated flows, attached flows are not as well resolved
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with the non-equilibrium model as with the Baldwin-Lomax model, fig.(45). The reason again
lies in the inner layer eddy viscosity formulation of Johnson and King. Recently, Johnson and
Coakley [24] proposed a new formulation which consists of a non-linear blending of the Johnson-
King and Baldwin-Lomax formulations. This new law seems to ameliorate the results but the
added non-linearity increases also the convergence problems.

The behaviors of the Johnson-King model observed in two dimensions were confirmed in
three dimensions. The test case used is the ONERA M6 wing, where comparisons with both
detailed experiments [45] and numerical results [2] [39] are possible. For an angle of attack
of @ = 6.06, a large separation region forms on the upper surface of the wing, fig.(46). In
this case the Baldwin-Lomax model is again inadequate to capture the main feature of the
flow. The pressure plateau after the interaction of the two shocks — the shock emanating from
the leading edge and the normal shock, fig.(47)— is for instance not captured at all and this
disagreement with the experimental data is not due to a lack of resolution, fig.(48). As pressure
plateau regions behind a shock wave are usually the result of a large reverse flow region, a non-
equilibrium model must be used in order to obtain a good resolution of the pressure distribution.
With the non-equilibrium model of the Johnson and King, it is clear that a good representation
of this pressure distribution is obtained, fig.(49) and the expected large reverse flow region
is effectively found, fig.(50). These results are the consequence of the lower values of eddy
viscocity predicted by the Johnson-King model in adverse pressure gradient regions. The lower
values of eddy viscosity also induce an upstream movement of the shock location, fig.(51). No
experimental visualizations of the wall streamlines were available on the ONERA M6 wing, but
the computed, mushroom type, wall streamlines are in good agreement with the results obtained
by Abid, Vatsa et al. [2]. The mushroom type structures were also observed experimentally on
other wings [26]. If the Baldwin-Lomax formulation for v4;eq is used, computation on coarse
grids with the Johnson-King model were possible and satisfactory results found, fig.(52-54);
even the wall streamlines patern was qualitatively well predicted, fig.(54). For an attached
flow case, a = 3.06, the Johnson-King model predicts a shock location which is as in the two-
dimensional case, slightly upstream of the position obtained with the Baldwin-Lomax model.
The difference however seems to be less pronounced in the three-dimensional case than in the
two-dimensional one, fig.(55,56).

8 Conclusion

Two and three-dimensional computations have been presented and differences between several
upwind schemes discussed. It has been found that the differences due to the upwind schemes are
negligible if the three waves existing in the Euler equations are taken into account by a Riemann
solver. The reconstruction scheme was found to have more influence on the accuracy of the
solution. Accurate solutions on coarse meshes were obtained with a third-order upwind biased
scheme. Such scheme requires the use of some limiter in order to compute smooth solutions
with shocks. If the use of limiters leads to robust schemes, it has the drawback of preventing
a convergence to the machine accuracy. It was proven that the use of a “smooth limiter”
can drastically improve the convergence of the method. The “smooth limiter” proposed, while
leading to good convergence rates on the RAE2822 airfoil, presents still some defects on the
ONERA M6 wing. Thus modifications on the limiter need to be done to enlarge its applicability.

Equilibrium and non-equilibrium mixing length type turbulence model were tested on two
and three-dimensional configurations. While the equilibrium model was found to give accurate
results for attached boundary layer type flows, it was also proven to be inadequate to pre-
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dict correctly separated flows. Inversly, the solutions obtained with a modified version of the
Johnson-King model agree well with experimental data for separated flows, but are less accurate
than the solutions computed with the Baldwin-Lomax model for attached flows. Futhermore,
an excessive sensitivity of the non-equilibrium model was experienced. Therefore some changes
in the non-equilibrium model in order to improve the accuracy of the solutions for attached flows
and to reduce the sensitivity of the model, have to be made before it can be used routinely in
engineering computations.
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Cpu us | ratio
Roe 1.8 1
Osher P 4.8 2.67
Osher O] 54 3

Table 1: Computing times (CRAY2); Riemann Solvers

Cpu ps | ratio
Chakravarthy-Osher | 1.25 1
Harten-Osher 1.75 14

Table 2: Computing times (CRAY2); Reconstruction Schemes
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Figure 1: Gradients near a shock
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Figure 2: Definition of the cell face reference frame
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Figure 3: Evolution of the tangential vector /7 in the boundary layer
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Figure 4:

Pressure distribution
Osher O scheme, & = %
Chakravarthy-Osher limiter
81x17 mesh (48 points on the airfoil)
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Figure 5:

Pressure distribution

Osher P scheme, k = %

Chakravarthy-Osher limiter
81x17 mesh (48)
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Figure 6:
Pressure distribution
Roee scheme, Kk = %—
Chakravarthy-Osher limiter

81x17 mesh (48)
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I'igure 7:
Influence of the turbulence modeling
Roc scheme
a) DBaldwin-Lomax model

b) Johunson-King model
321x65 mesh (192)
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Figure 8:

Pressure contours
Osher O scheme
Chakravarthy-Osher limiter
81x17 mesh (48)
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Figure 9:
Pressure contours
Osher P scheme
Chakravarthy-Osher limiter
81x17 mesh (48)
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Iigure 10:
Pressure contours
Roe scheme
Chakravarthy-Osher limiter
81x17 mesh (48)
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Figure 11:
Pressure distribution (CAST10)

Roe scheme
Harten-Osher limiter
81x17 mesh (48)
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Figure 12:

Pressure distribution (RAE2822)
Roe scheme
Harten-Osher limiter
81x17 mesh (48)
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Figure 13:

Pressure distribution (RAE2822)

Roe scheme

Chakravarthy-Osher limiter x =

81x17 mesh (48)

Figure 14:

Pressure distribution (RAE2822)
Roe scheme
Unlimited third order scheme
81x17 mesh (48)
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Figure 15:
Convergence history
Osher O scheme, k = —1
Unlimited
CFL=50, relax=0.5
161x33 mesh (96)
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Figure 16:

Convergence history
Osher P scheme, k = —1

Unlimited

CFL=50, relax=0.5
161x33 mesh (96)

Convergence history
Roe scheme, k = —1

Unlimited

CFL=50, relax=0.5
161x33 mesh (96)
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Figure 18:
Convergence history
Chakravarthy-Osher limiter, x = %
CFL=25, relax=0.5
161x33 mesh (96)
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Figure 20:
Pressure (a) and Skin friction (b) distributions
Chakravarthy-Osher limiter k = -;—
161x33 mesh (96)
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Figure 21:
Pressure (a) and Skin friction (b) distributions
Unlimited x = %

161x33 mesh (96)
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Figure 24:
Convergence history
Unlimited x = 1
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161x33 mesh (96)

37



—20k O EXPERIMENT, COOK
——  NAVIER-STOKES

Log(Residual)

Figure 25:
Pressure distribution
Unlimited k = —1
161x33 mesh (96)
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Convergence history
Unlimited x = -1
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161x33 mesh (96)
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Convergence history

CFL=30, relax=0.5
161x33 mesh (96)

Figure 28:
Convergence history

CFL=50, relax=0.5
161x33 mesh (96)

Figure 29:

Convergence history
Chakravarthy-Osher limiter & = -15
CFL=100, relax=0.5

161x33 mesh (96)
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Convergence history
1

“Smooth limiter” k = 3

a) CFL=15, relax=0.5 81x17 mesh (48)
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Figure 32:
Pressure distributions
a) unlimited k = ~1

bh) “Smooth limiter” k = 31,;

c¢) Chakravarthy-Osher limiter x = 3

d) unlimited k = %

81x17 mesh (48)
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Figure 33:
Pressure and skin friction distributions
a) unlimited x = -1

b) “Smooth limiter” k = %—

c¢) Chakravarthy-Osher limiter x = %
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Figure 34:

Pressure and skin friction distributions
RAE2822 (case 10)
“Smooth limiter” k = 3
161x33 mesh (96)

Figure 35:
Convergence history
Rae2822 (case 10)
“Smooth limiter” k = %
CFL=30, relax=0.5
161x33 mesh (96)
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Figure 37:
Pressure distributions
ONERA M6 M., = .84, a = 3.06, Re = 11 x 10°%
97x25x17 mesh
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Figure 38:

Pressure distributions

ONERA MG M, = .84, a = 3.06, Re =11 x 108

Baldwin-Lomax model
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Figure 39:

Pressure and skin friction distributions

Rac2822 (case 10)

Baldwin-Lomax model
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81x17 mesh (48)
161x33 mesh (96)
257x65 mesh (192)
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Figure 40:

Pressure and skin friction distributions
Rac2822 (case 10)
Johnson-King model

a)  161x33 mesh (96)
b)  257x65 mesh (192)
¢)  321x65 mesh (256)
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Figure 41:
Pressure distribution
.Rae2822 (case 10)

161x33 mesh (96)
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Iigure 42:
Pressure distribution
Rae2822 (case 10)
J-K model with B-L formulation for vy; eq
161x33 mesh (96)
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Figure 43:
Pressure distribution
Rac2822 (case 10)
J-K model with B-L formulation for v;
257x65 mesh (192)
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Pressure and skin friction distributions
RAE2822 (case 9)
Johnson-King model
257x65 mesh (192)
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Figure 46: Figure 47:

Wall streanlines Pressure contours
ONERA M6 Mo = .84, a = 6.06, Re=11x 108 ONERA M6 My, = 84, « = 6.06, Re = 11 x 10°
Baldwin-Lomax model Baldwin-Lomax model
193x49x33 mesh 193x49x33 mesh
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A Pressure distributions
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i Pressure distributions
8k 2Y/B=.950 ONERA M6 M,, = .84. a = 6.06, Re = 11 x 10°
Baldwin-Lomax and Johnson-King models
193x49x33 mesh
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Figure 50: Figure
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Figure 52:
Pressure distributions
ONERA M6 M., = .84, a = 6.06, Re = 11 x 10°
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Figure 53: Figure 54:
Pressure contours Wall streamlines
ONERA M6 M, = .84, a = 6.06, Re = 11 x 106 ONERA M6 M., = .84, a = 6.06, Re = 11 x 106
Johnson-King model Johnson-King model
97x25x17 mesh 97x25x17 mesh

60




2Y/B=.440

I | | L1
0

4 .6

. . .8
X /C

oo EXPERIMENT
— 193X48X33 BL

1.0

61

193X49X33 JK

-1.2

.2 .4 6

X /C

| |
1.0




0o EXPERIMENT
— 193X49X33 BL iy
- 193X49X33 JK | |

Figure 55:

Pressure distributions
ONERA M6 M, = .84, a = 3.06, Re = 11 x 106
2Y/B:.950 Baldwin-Lomax and Johnson-King models
193x19x33 mesh

Figure 56:
Pressure contours
ONERA M6 M., = .84, a = 3.06, Re = 11 x 10°

a} Baldwin-Lomax model

b) Johnson-King model
193x49x33 mesh
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